2022.03 - 至今: 鹏城国家实验室双聘导师
2015.09 - 至今: 华南理工大学计算机科学与工程学院 教授、博导
2012.05 - 2015.08: 华南理工大学计算机科学与工程学院 教授(先上岗)、博导
2010.09 - 2012.05: 华南理工大学计算机科学与工程学院 副教授,硕士生导师
2009.04 - 2010.08: 华南理工大学计算机科学与工程学院 讲师
2016. 3 - 2017. 2, 澳门大学,科学学院,访问学者 (合作导师:陈俊龙教授)
2013.03 - 2015.02,香港浸会大学,计算机系,Postdoctoral research fellow
2011.04 - 2013.02,香港理工大学,电子计算机系,Postdoctoral research fellow
2009.04 - 2010.01, 香港城市大学,计算机系,Research fellow
2008.03 - 2008.08, 香港城市大学,计算机系,Research fellow
2005.01 - 2008.02, 香港城市大学,计算机系,PhD
2017年 国家优秀青年科学基金获得者
2014年 广东高校“千百十人才培养计划”省级培养对象
2013年 广东省杰出青年科学基金获得者
2012年 香江学者计划
2011年 教育部新世纪优秀人才支持计划
华为自动驾驶网络顾问 (2019-)
CCF理事(2016-2019,2020-2023)
CCF杰出会员、IEEE高级会员、ACM高级会员、CAAI高级会员
2015-2016 CCF YOCSEF广州分论坛主席
CCF 广州分会 委员
IEEE Computational Intelligence Society “Data Mining and Big Data Analytics”委员会委员
中国计算机学会人工智能与模式识别专委会委员
中国计算机学会数据库专委会委员
中国计算机学会多媒体专委会委员
中国人工智能学会机器学习专委会委员
中国人工智能学会知识工程与分布智能专委会委员
期刊:IEEE Transactions on Systems, Man, and Cybernetics: Systems副主编,国内CCF会刊《计算机应用》编委 ,期刊《Informatica》编委,担任众多国际知名顶级期刊审稿人,担任多个国际和国内会议的分会主席或程序委员会成员。
项目评审:国家自然科学基金项目同行通讯评议专家、CCF优博评审专家、广东省自然科学基金项目同行通讯评议专家、广东省和广州市相关科技项目评审专家
论文情况:已经发表学术论文200多篇,其中70篇IEEE Transactions系列。
项目情况:主持和参与项目30多项,其中主持省部级及以上科研项目14项
研究兴趣:机器学习、数据挖掘,人工智能、模式识别
讲授课程:数据库、神经网络与深度学习
1. 2023年,中国人工智能学会吴文俊人工智能自然科学奖二等奖, “面向复杂多源异构数据的模式发现及应用”,余志文、陈俊龙、杨楷翔
2. 2021年,中国计算机学会自然科学奖二等奖, “面向高维数据的集成学习研究”,余志文、陈俊龙、马千里、杨楷翔、施一帆
3. 2015年,广东省计算机学会科学技术奖“视觉计算关键理论研究与应用”,一等奖,排名第三
4. 2014年,广东省高等教育教学成果奖“计算机科学与技术创新人才培养模式的探索与实践”,一等奖,排名第四.
5. ACM-China & CCF广州分会新星奖
已经发表学术论文200多篇, 70篇IEEE Transactions系列。
1. Zhiwen Yu, Zhijie Zhong, Kaixiang Yang, Wenming Cao, C. L. Philip Chen, “Broad Learning Autoencoder with Graph Structure for Data Clustering,” IEEE Transactions on Knowledge and Data Engineering, vol. 36, no. 1, pp. 49-61, 2024.
2. Guojie Li, Zhiwen Yu, Kaixiang Yang, Mianfen Lin, C. L. Philip Chen, “Exploring Feature Selection with Limited Labels: A Comprehensive Survey of Semi-Supervised and Unsupervised Approaches”; IEEE Transactions on Knowledge and Data Engineering, 2024. DOI: 10.1109/TKDE.2024.3397878 (Accept)
3. Zhijie Zhong, Zhiwen Yu; Kaixiang Yang, Ziwei Fan, C. L. Philip Chen, "Adaptive Memory Broad Learning System for Unsupervised Time Series Anomaly Detection", IEEE Transactions on Neural Networks and Learning Systems, 2024. (Accept)
4. Yuhong Xu, Zhiwen Yu*, C. L. Philip Chen, “Classifier Ensemble Based on Multiview Optimization for High-Dimensional Imbalanced Data Classification,” IEEE Transactions on Neural Networks and Learning Systems, vol. 35, no. 1, pp.870-883, 2024.
5. Yifan Shi, Zhiwen Yu*, C. L. Philip Chen, Huanqiang Zeng, “Consensus Clustering with Co-Association Matrix Optimization,” IEEE Transactions on Neural Networks and Learning Systems, vol. 35, no. 3, pp. 4192-4205, 2024.
6. Dan Dai, Zhiwen Yu*, Weijie Huang, Yang Hu, C. L. Philip Chen, “Multi-Objective Cluster Ensemble Based on Filter Refinement Scheme,” IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 8, pp. 8257-8269, 2023.
7. Yuhong Xu, Zhiwen Yu*, Wenming Cao, C. L. Philip Chen, “A Novel Classifier Ensemble Method Based on Subspace Enhancement for High-Dimensional Data Classification,” IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 1, pp. 16-30, 2023.
8. Yuhong Xu, Zhiwen Yu*, C. L. Philip Chen, Zhulin Liu, “Adaptive Subspace Optimization Ensemble Method for High-Dimensional Imbalanced Data Classification,” IEEE Transactions on Neural Networks and Learning Systems, vol. 34, no. 5, pp. 2284-2297, 2023.
9. Guoliang He, Lifang Dai, Zhiwen Yu*, C. L. Philip Chen, “GAN-based Temporal Association Rule Mining on Multivariate Time Series Data,” IEEE Transactions on Knowledge and Data Engineering, 2023. DOI: 10.1109/TKDE.2023.3335049.
10. Kaixiang Yang, Yuchen Liu, Zhiwen Yu∗, C. L. Philip Chen, “Extracting and Composing Robust Features with Broad Learning System,” IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 4, pp. 3885-3896, 2023.
11. Yifan Shi, Kaixiang Yang, Zhiwen Yu*, C. L. Philip Chen, Huanqiang Zeng, “Adaptive Ensemble Clustering with Boosting BLS-Based Autoencoder,” IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 12, pp. 12369-12383, 2023.
12. Mianfeng, Lin, Kaixiang Yang, Zhiwen Yu, Yifan Shi, C. L. Philip Chen, “Hybrid Ensemble Broad Learning System for Network Intrusion Detection,” IEEE Transactions on Industrial Informatics, 2023. DOI: 10.1109/TII.2023.3332957
13. Cheng Liu, Rui Li, Si Wu, Hangjun Che, Dazhi Jiang, Zhiwen Yu, Hau-San Wong, “Self-Guided Partial Graph Propagation for Incomplete Multiview Clustering,” IEEE Transactions on Neural Networks and Learning Systems, 2023. DOI: 10.1109/TNNLS.2023.3244021.
14. Kaixiang Yang, Yifan Shi, Zhiwen Yu, Qinmin Yang, Arun Kumar Sangaiah, Huanqiang Zeng, “Stacked One-Class Broad Learning System for Intrusion Detection in Industry 4.0,” IEEE Transactions on Industrial Informatics, vol. 19, no. 1, pp. 251-260, 2023.
15. Liu Cheng, Wu Si, Jiang Dazhi, Yu Zhiwen, Wong Hau-San, “View-Aware Collaborative Learning for Survival Prediction and Subgroup Identification,” IEEE Transactions on Biomedical Engineering, vol. 70, no. 1, pp. 307-317, 2023.
16. Zhiwen Yu, Zhongfan Zhang, Wenming Cao, C. L. Philip Chen, Cheng Liu, Hau-San Wong, “GAN-Based Enhanced Deep Subspace Clustering Networks,” IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 7, 3267-3281, 2022.
17. Zhiwen Yu, Fengxu Ye, Wenming Cao, Kaixiang Yang, C. L. Philip Chen, Lianglun Cheng, Jane You, Hau-San Wong, “Semi-Supervised Classification with Novel Graph Construction for High Dimensional Data,” IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 1, pp. 75-88, 2022.
18. Zhiwen Yu, Daxing Wang, Xian-Bing Meng, C. L. Philip Chen, “Clustering Ensemble Based on Hybrid MultiView Clustering,” IEEE Transactions on Cybernetics, vol. 52, no. 7, pp. 6518-6530, 2022.
19. Kaixiang Yang, Zhiwen Yu*, C. L. Philip Chen, Wenming Cao, Jane. You, Hau-San Wong, “Incremental Weighted Ensemble Broad Learning System For Imbalanced Data,” IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 12, pp. 5809-5824, 2022.
20. Cheng Liu, Wenming Cao, Si Wu, Wenjun Shen, Dazhi Jiang, Zhiwen Yu, Hau-San Wong, “Asymmetric Graph-Guided Multi-Task Survival Analysis with Self-Paced Learning,” IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 2, pp. 654-666, 2022.
21. Yuhong Xu, Zhiwen Yu*, Wenming Cao, C. L. Philip Chen, “Adaptive Dense Ensemble Model for Text Classification,” IEEE Transactions on Cybernetics, vol. 52, no. 8, pp. 7513-7526, 2022.
22. Zhiwen Yu, Kankan Lan, Zhulin Liu, Guoqiang Han, “Progressive Ensemble Kernel-Based Broad Learning System for Noisy Data Classification,” IEEE Transactions on Cybernetics, vol. 52, no. 9, pp. 9656-9669, 2022.
23. Jian Zhong, Xiangping Zeng, Wenming Cao, Si Wu, Cheng Liu, Zhiwen Yu, Hau-San Wong, “Semi-Supervised Multiple Choice Learning for Ensemble Classification,” IEEE Transactions on Cybernetics, vol. 52, no. 5, pp. 3658-3668, 2022.
24. Yang Hu, Guihua Wen, Mingnan Luo, Dan Dai, Wenming Cao, Zhiwen Yu, Wendy Hall, “Inner-Imaging Networks: Put Lenses Into Convolutional Structure,” IEEE Transactions on Cybernetics, vol. 52, no. 8, pp. 8547-8560, 2022.
25. Kaixiang Yang, Zhiwen Yu*, C. L. Philip Chen, Wenming Cao, Hau-San Wong, Jane You, Guoqiang Han, “Progressive Hybrid Classifier Ensemble for Imbalanced Data,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 4, pp. 2464-2478, 2022.
26. Cheng Liu, Wenming Cao, Si Wu, Wenjun Shen, Dazhi Jiang, Zhiwen Yu, Hau-San Wong, “Supervised Graph Clustering for Cancer Subtyping Based on Survival Analysis and Integration of Multi-Omic Tumor Data,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 19, no. 2, pp. 1193-1202, 2022.
27. Yuhong Xu, Zhiwen Yu*, Wenming Cao, C. L. Philip Chen, Jane You, “Adaptive Classifier Ensemble Method Based on Spatial Perception for High-Dimensional Data Classification,” IEEE Transactions on Knowledge and Data Engineering, vol. 33, no. 7, pp. 2847-2862, 2021.
28. Yifan Shi, Zhiwen Yu*, Wenming Cao, C. L. Philip Chen, Hau-San Wong, Guoqiang Han, “Fast and Effective Active Clustering Ensemble Based on Density Peak,” IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 8, pp. 3593-3607, 2021.
29. Yang Hu, Guihua Wen, Huiqiang Liao, Changjun Wang, Dan Dai, Zhiwen Yu, “Automatic Construction of Chinese Herbal Prescription from Tongue Image via Cnns and Auxiliary Latent Therapy Topics,” IEEE Transactions on Cybernetics, vol. 51, no. 2, pp. 708-721, 2021.
30. Dan Dai, Juan Tang, Zhiwen Yu*, Hau-San~Wong, Jane You, Wenming Cao, Yang Hu, C. L. Philip Chen,An Inception Convolutional Autoencoder Model for Chinese Healthcare Question Clustering,” IEEE Transactions on Cybernetics, vol. 51, no. 4, pp. 2019-2031, 2021.
31. Jun Wang, Xing Wang, Guoxian Yu, Carlotta Domeniconi, Zhiwen Yu, Zili Zhang, “Discovering Multiple Co-Clusterings with Matrix Factorization,” IEEE Transactions on Cybernetics, vol. 51, no. 7, pp. 3576-3587, 2021.
32. Qianli Ma, Enhuan Chen, Zhenxi Lin, Jiangyue Yan, Zhiwen Yu, Wing W. Y. Ng, “Convolutional Multitimescale Echo State Network,” IEEE Transactions on Cybernetics, vol. 51, no. 3, pp. 1613-1625, 2021.
33. Yewang Chen, Lida Zhou, Songwen Pei, Zhiwen Yu*, Yi chen, Xin Liu, Jixiang Du and Naixue Xiong, “KNN-BLOCK DBSCAN: Fast Clustering for Large Scale Data,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 6, pp. 3939-3953, 2021.
34. Kaixiang Yang, Zhiwen Yu*, Xin Wen, Wenming Cao, C. L. Philip Chen, Hau-San Wong, Jane You, “Hybrid Classifier Ensemble for Imbalanced Data,” IEEE Transactions on Neural Networks and Learning Systems, vol. 31, no. 4, pp. 1387-1400, 2020.
35. Cheng Liu, Chu Tao Zheng, Si Wu, Zhiwen Yu and Hau-San Wong, “Multitask Feature Selection by Graph-Clustered Feature Sharing,” IEEE Transactions on Cybernetics, vol.50, no.1, pp. 74-86, 2020.
36. Yifan Shi, Zhiwen Yu*, C. L. Philip Chen, Jane You, Hau-San Wong, Yide Wang, “Transfer Clustering Ensemble Selection,” IEEE Transactions on Cybernetics, vol. 50, no. 6, pp. 2872-2885, 2020.
37. Qianli Ma, Sen Li, Lifeng Shen, Jiabing Wang, Jia Wei, Zhiwen Yu, Garrison W. Cottrell, “End-to-End Incomplete Time-Series Modeling from Linear Memory of Latent Variables,” IEEE Transactions on Cybernetics, vol. 50, no. 12, pp. 4908-4920, 2020.
38. Jichang Li, Si Wu, Cheng Liu, Zhiwen Yu, Hau-San Wong, “Semi-Supervised Deep Coupled Ensemble Learning with Classification Landmark Exploration,” IEEE Transactions on Image Processing, vol. 29, no. 1, pp. 538-550, 2020.
39. Si Wu, Wenhao Wu, Shiyao Lei, Sihao Lin, Rui Li, Zhiwen Yu, Hau-San Wong, “Semi-Supervised Human Detection via Region Proposal Networks Aided by Verification,” IEEE Transactions on Image Processing, vol. 29, pp. 1562-1574, 2020.
40. Wenming Cao, Si Wu, Zhiwen Yu, Hau-San Wong, “Exploring Correlations Among Tasks, Clusters, and Features for Multitask Clustering,” IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 2, pp. 355-368, 2019.
41. Zhiwen Yu*, Yidong Zhang, Jane You, C. L. Philip Chen, Hau-San Wong, Guoqiang Han, “Adaptive Semi-Supervised Classifier Ensemble for High Dimensional Data Classification,” IEEE Transactions on Cybernetics, vol. 49, no. 2, pp. 366-379, 2019.
42. Zhiwen Yu*, Daxing Wang, Zhuoxiong Zhao, C. L. Philip Chen, Jane You, Hau-San Wong, “Hybrid Incremental Ensemble Learning for Noisy Real-World Data Classification,” IEEE Transactions on Cybernetics, vol. 49, no. 2, pp. 403-416, 2019.
43. Zhiwen Yu*, Yidong Zhang, C. L. Philip Chen, Jane You, Hau-San Wong, Dan Dai, Si Wu, “Multi-Objective Semisupervised Classifier Ensemble,” IEEE Transactions on Cybernetics, vol. 49, no. 6, pp. 2280-2293, 2019.
44. Yong Du, Guoqiang Han, Yuhui Quan, Zhiwen Yu, Hau-San Wong, C. L. Philip Chen, Jun Zhang, “Exploiting Global Low-rank Structure and Local Sparsity Nature for Tensor Completion,” IEEE Transactions on Cybernetics, vol.49, no. 11, pp. 3898-3910, 2019.
45. Zhiwen Yu*, Peinan Luo, Jiming Liu, Hau-San Wong, Jane You, Guoqiang Han Jun Zhang, “Semi-supervised Ensemble Clustering Based on Selected Constraint Projection,” IEEE Transactions on Knowledge and Data Engineering, vol. 30, no. 12, pp. 2394-2407, 2018.
46. Zhiwen Yu, Ye Lu, Jun Zhang, Jane You, Hau-San Wong, Yide Wang, Guoqiang Han, “Progressive Semisupervised Learning of Multiple Classifiers,” IEEE Transactions on Cybernetics, vol. 48, no. 2, pp. 689-702. 2018.
47. Zhiqiang Wang, Zhiwen Yu*, C. L. Philip Chen, Jane You, Tianlong Gu, Hau-San Wong, Jun Zhang, “Clustering by Local Gravitation,” IEEE Transactions on Cybernetics, vol. 48, no. 5, pp. 1383-1396, 2018.
48. Si Wu, Qiujia Ji, Shufeng Wang, Hau-San Wong, Zhiwen Yu, Yong Xu, “Semi-Supervised Image Classification with Self-Paced Cross-Task Networks,” IEEE Transactions on Multimedia, vol. 20, no. 4, pp. 851-865, 2018.
49. Zhiwen Yu, Zongqiang Kuang, Jiming Liu, Hongsheng Chen, Jun Zhang, Jane You, Hau-San Wong, Guoqiang Han, “Adaptive Ensembling of Semi-supervised Clustering Solutions,” IEEE Transactions on Knowledge and Data Engineering, vol. 29, no. 8, pp. 1577-1590, 2017.
50. Zhiwen Yu, Zhiqiang Wang, Jane You, Jun Zhang, Jiming Liu, Hau-San Wong, Guoqiang Han, “A New Kind of Nonparametric Test for Statistical Comparison of Multiple Classifiers Over Multiple Datasets,” IEEE Transactions on Cybernetics, vol. 47, no. 12, pp. 4418-4431, 2017.
51. Zhiwen Yu, Xianjun Zhu, Hau-San Wong, Jane You, Jun Zhang, Guoqiang Han, “Distribution Based Cluster Structure Selection,” IEEE Transactions on Cybernetics, vol. 47, no. 11, pp. 3554-3567, 2017.
52. Zhiwen Yu, Peinan Luo, Jane You, Hau-San Wong, Hareton Leung, Si Wu, Jun Zhang, Guoqiang Han, “Incremental Semi-supervised Clustering Ensemble for High Dimensional Data Clustering,” IEEE Transactions on Knowledge and Data Engineering, vol. 28, no. 3, pp. 701-714, 2016.
53. Zhiwen Yu, Hantao Chen, Jane You, Hareton Leung, Jiming Liu, Guoqiang Han, “Hybrid K Nearest Neighbor Classifier,” IEEE Transactions on Cybernetics, vol. 46, no. 6, pp. 1263-1275, 2016.
54. Zhiwen Yu, Le Li, Jiming Liu, Jun Zhang, Guoqiang Han, “Adaptive Noise Immune Cluster Ensemble Using Affinity Propagation,” IEEE Transactions on Knowledge and Data Engineering, vol. 27, no. 12, pp. 3176-3189, 2015.
55. Zhiwen Yu, Le Li, Jiming Liu, Guoqiang Han, “Hybrid Adaptive Classifier Ensemble,” IEEE Transactions on Cybernetics, vol. 42, no. 2, pp. 177-190. 2015.
56. Zhiwen Yu, Hantao Chen, Jane You, Hau-San Wong, Jiming Liu, Guoqiang Han, Le Li, “Adaptive Fuzzy Consensus Clustering Framework for Clustering Analysis of Cancer Data,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 12, no. 3, pp. 568-582, 2015.
57. Zhiwen Yu, Hongsheng Chen, Jane You, Hau-San Wong, Jiming Liu, Le Li, Guoqiang Han, “Double Selection Based Semi-Supervised Clustering Ensemble for Tumor Clustering from Gene Expression Profiles,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 11, no. 4, pp. 727-740, 2014.
58. Si Wu, Hau-San Wong, Zhiwen Yu, “A Bayesian Model for Crowd Escape Behavior Detection,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 24, no. 1, pp. 85-98, 2014.
59. Guoxian Yu, Huzefa Rangwala, Carlotta Domeniconi, Guoji Zhang, Zhiwen Yu, “Protein Function Prediction with Incomplete Annotations,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 11, no. 3, pp. 579-591, 2014.
60. Guoxian Yu, Carlotta Domeniconi, Huzefa Rangwala, Guoji Zhang, Zhiwen Yu, “Protein Function Prediction using Multilabel Ensemble Classification,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 10, no. 4, pp. 1045-1057, 2013.
61. Zhiwen Yu, Hantao Chen, Jane You, Guoqiang Han, Le Li, “Hybrid Fuzzy Cluster Ensemble Framework for Tumor Clustering from Bio-molecular Data,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 10, no. 3, pp. 657-670, 2013.
62. Zhiwen Yu, Le Li, Jane You, Guoqiang Han, “SC3: Triple Spectral Clustering Based Consensus Clustering Framework for Class Discovery from Cancer Gene Expression Profiles,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 9, no. 6, pp. 1751-1765, 2012.
63. Zhiwen Yu, Jane You, Le Li, Hau-San Wong, Guoqiang Han, “Representative Distance: A New Similarity Measure for Class Discovery from Gene Expression Data,” IEEE Transactions on NanoBioScience, vol. 11, no. 4, pp. 341-351, 2012.
64. Zhiwen Yu*, Hau-San Wong, Dingwen Wang, Ming Wei, “Neighborhood Knowledge-Based Evolutionary Algorithm for Multiobjective Optimization Problems,” IEEE Transactions on Evolutionary Computation, vol. 15, no. 6, pp. 812-831, 2011.
65. Zhiwen Yu*, Hau-San Wong, Jane You, Qinmin Yang, Hongying Liao, “Knowledge Based Cluster Ensemble for Cancer Discovery from Biomolecular Data,” IEEE Transactions on NanoBioScience, vol. 10, no. 2, pp. 76-85, 2011.
66. Zhiwen Yu, Zhongkai Deng, Hau-San Wong, Lirong Tan, “Identifying Protein Kinase-Specific Phosphorylation Sites Based on the Bagging-Adaboost Ensemble Approach,” IEEE Transactions on NanoBioScience, vol. 9, no. 2, pp. 132-143, 2010.
67. Shaohong Zhang, Hau-San Wong, Zhiwen Yu, Horace H.S. Ip, “Hybrid Associative Retrieval of Three-Dimensional Models,” IEEE Transactions on Systems, Man and Cybernetics -Part B: Cybernetics. vol. 40, no. 6, pp. 1582-1595, 2010.
68. Zhiwen Yu, Hau-San Wong, “Class Discovery from Gene Expression Data Based on Perturbation and Cluster Ensemble,” IEEE Transactions on NanoBioScience, vol. 8, no. 2, pp. 147-160, 2009.
69. Zhiwen Yu, Hau-San Wong. “A Rule Based Technique for Extraction of Visual Attention Regions Based on Real-Time Clustering,” IEEE Transactions on Multimedia, vol.9, no. 4, pp. 766-784, 2007.
70. Hau-San Wong, Bo Ma, Zhiwen Yu, Pui Fong Yeung, Horace H.S. Ip. “3D Head Model Retrieval Using a Single Face View Query,” IEEE Transactions on Multimedia, vol. 9, no. 5, pp. 1026-1036, 2007.
近五年国际顶会论文:
1.L. Xie, W. Xue, Z. Xu, S. Wu, Z. Yu, and H. Wong, "Blemish-aware and progressive face retouching with limited paired data", in CVPR, 2023.
2.X. Wei, Z. Xu, C. Liu, S. Wu, Z. Yu, and H. Wong, "Text-guided unsupervised latent transformations for multi-attribute image manipulation," in CVPR, 2023
3.Yi Liu, Xiaoyang Huo, Tianyi Chen, Xiangping Zeng, Si Wu, Zhiwen Yu, Hau-San Wong,“Mask-Embedded Discriminator With Region-Based Semantic Regularization for Semi-Supervised Class-Conditional Image Synthesis”, CVPR 2021,pp. 5506-5515.
4.Y. Liu, G. Deng, X. Zeng, S. Wu, Z. Yu and H. Wong, "Regularizing Discriminative Capability of CGANs for Semi-Supervised Generative Learning", in CVPR 2020, pp. 5720-5729.
5.Si Wu, Jian Zhong, Wenming Cao, Rui Li, Zhiwen Yu, and Hau-San Wong, “Improving domain-specific classification by collaborative learning with adaptation networks,” in AAAI 2019, pp. 5450-5457.
6.Si Wu, Jichang Li, Cheng Liu, Zhiwen Yu, and Hau-San Wong, “Mutual learning of complementary networks via residual correction for improving semi-supervised classification,” in CVPR 2019, pp. 6500-6509.
7.Si Wu, Guangchang Deng, Jichang Li, Rui Li, Zhiwen Yu, and Hau-San Wong, “Enhancing TripleGAN for semi-supervised conditional instance synthesis and classification,” in CVPR 2019, pp. 10091-10100.
8. Xing Wang, Guoxian Yu, Carlotta Domeniconi, Jun Wang, Zhiwen Yu, Zili Zhang, “Multiple Co-clusterings”, pp. 1308-1313, ICDM 2018.
主持的省部级科研项目 (主持或参与项目30多项,其中省部级项目14项)
1. 国家自然科学基金重点项目(人工智能应急专项),61751205,多源异构数据的决策特征提取与知识发现,2018/01-2020/12,结题,主持
2. 国家优秀青年科学基金,61722205,集成学习理论及其应用,2018/01-2020/12,结题,主持
3. 国家自然科学基金面上项目,61572199,基于衍生距离数学模型的半监督聚类集成研究,2016/1-2019/12,结题,主持
4. 国家自然科学基金青年基金项目,61003174,基于聚类集成算法的癌症基因表达数据模式发现新框架的研究, 2011/01-2013/12,结题,主持
5. 广东省重点研发计划,2018B010107002,面向智能制造多模态数据的认知理论研究,2019/1-2021/12,结题,主持
6. 广东省科技计划(粤港合作项目),2016A050503015,媒体大数据的复杂事件挖掘研究,2016/5-2018/5,结题,主持
7. 广东省科技计划(国际合作项目),2015A050502011,集成学习算法在多元城市数据融合和挖掘的应用研究,2016/1-2017/12,结题,主持
8. 广东省自然科学基金杰出青年基金项目,S2013050014677,模式发现及其应用,2013/10-2016/09, 结题,主持
9. 中国博士后科学基金项目,2013M540655, 模式发现关键技术及其在癌症发现上的应用,2013/01-2014/12, 结题,主持
10. 香港学者联合会和中国博士后管委会的香江学者计划,XJ2012015,健康信息技术的研究, 2013/02-2015-02,结题,主持
11. 教育部新世纪优秀人才支持计划,NCET-11-0165,集成学习的关键技术研究及其应用, 2011/01-2013/12,结题, 主持
12. 教育部博士点科研基金(新教师类),20100172120031,癌症基因表达数据模式发现新框架, 2011/01-2012/12,结题,主持
13. 广东省自然科学基金面上项目,S2011010000264,基于集成学习的糖尿病视网膜病自动识别算法研究,2011/10-2013/09,结题, 主持
14. 广东省自然科学基金博士启动项目,10451064101004233,癌症基因表达数据模式发现新框架研究,2010/10-2012/09,结题,主持
参与的国家项目:
15. 国家自然科学基金委员会-广东省人民政府大数据科学研究中心项目, U1611461,视频大数据高效表达、深度分析与综合利用,2017/1-2020/12,结题,参与(合作单位负责人)
16. 国家自然科学基金委员会,NSFC广东联合基金项目,U21A20478,基于群智感知的分布式智能制造决策优化理论与方法,2022/01-2025/12,在研,参与
欢迎各位有志于从事学术研究的同学报考我的博士或者硕士 (zhwyu@scut.edu.cn)
-
工作经历
-
研究经历
-
人才项目
-
社会兼职
-
学术兼职
-
获奖
-
IEEE Transactions论文列表
-
项目
-
学生培养
-
Contact Me