-
1工作经历
-
2教育背景
-
3研究方向
-
4博士后、研究生与实习生招募意向
-
5近期主要资助
-
6相关奖励
-
7主要学术论文(*表示通讯作者)
-
8近期合作的往届、在学研究生
-
9教学情况
-
10Contact Me
近年来主要从事深度学习数据优化与可解释性、数据合成与安全的理论算法研究及应用。近三年来以一作或者带领研究生在IEEE TPAMI,TKDE,TIP,TNNLS,TCYB,TAFFIC,ACM TKDD,IPM,INS,AAAI,ECML等知名国际期刊与会议上发表论文20余篇。曾先后就职于中科院自动化所模式识别国家重点实验室、天津大学(国家)应用数学中心等国家级科研机构。负责了几十项包括国家自然基金、省级重点在内的科研项目以及企业横向委托研发课题。曾获中国专利奖、北京科学技术一等奖、北京市发明一等奖,中国电子学会优秀硕士论文指导教师、天津大学教学成果一等奖等奖励。
10/2024-至今 国科大杭州高等研究院智能学院 教授
03/2024-09/2024 香港浸会大学数学系 访问研究员
04/2017-09/2024 天津大学(国家)应用数学中心/数学学院 教授
03/2007-03/2017 中国科学院自动化研究所模式识别国家重点实验室 助理研究员/副研究员
09/2008-01/2012 中国科学院自动化研究所模式识别国家重点实验室 (在职)博士研究生
09/2003-07/2006 中国科学院自动化研究所模式识别国家重点实验室 硕士研究生
09/1999-07/2003 西安交通大学电气工程学院 本科生
围绕“以数据为中心的AI”,开展人工智能数据优化、合成与安全的基本理论、算法与应用研究。
1. 深度学习数据优化与可解释性
率先探索将机器学习(特别是深度学习)中一大类的面向数据的学习方法与策略(如重采样、增广、扰动、赋权、精简)归纳为一个较为独立的机器学习子分支或者范式:数据优化。我们从理论与实证两个角度对一系列的增广、扰动、赋权等算法的核心要素与基本原理进行了研究,并提出了一系列新的深度学习数据优化算法。此外,我们还研究了一系列深度学习组件的可解释性。
2. 数据合成与数据安全研究
数据合成被认为是未来一段时期内最具潜力的AI研究方向。我们将关注如下几个方面:
1)面向特定领域的数据合成方法;
2)面向通用预训练的数据合成理论与方法;
3)面向价值对齐的数据合成方法;
4)AI数据度量与评测。
随着AGI进程的不断推进,AI安全将越来越重要,我们主要侧重在其中的数据安全,主要包括:
1)数据毒化与防范;
2)合成数据的安全问题以及面向安全的数据合成。
数据合成与安全将是研究组未来的重心,热诚期待青年学子加入!
3. 文本与图像数据智能分析
将所研究的深度学习理论与算法用以解决社会与工业应用问题,包括:高并发互联网文本与图像的智能理解、工业控制电路的智能解析、商业智能的视觉解析等。相关技术已经服务于十余家大中型企事业单位。
国科大杭州高等研究院智能学院目前处于初创期、高速发展期,管理服务、软硬件条件与工作氛围渐入佳境,2027年将入驻到条件极为优越的永久校区。整个智能学院正张开双臂欢迎来自五湖四海的AI才俊!本课题组也热忱欢迎青年学者与学子们的加入、勠力同心共创未来!
1. 近期拟招募博士后多名,待遇优厚,出站留杭州工作有40~140万的生活/住房补贴、留杭高院工作最高可领180万的生活/住房补贴(具体可点击了解相关详情);
2. 年度招收博士生(视分配名额情况)、硕士生(每年2名左右);
3. 招收编程能力强,对AI数据生成与安全有浓厚兴趣的研究生来校实习半年以上【可与原导师共同指导】;
1. 深度学习数据优化的理论与方法, 国家自然基金面上项目, 负责人, 2025-2028.
2. 文献理解驱动的深度元学习研究, 国家自然基金面上项目, 负责人, 2021-2024.
3. 大数据分析与计算, 天津市科技局重点项目, 负责人, 2023-2024.
4. 深度元学习关键问题研究, 之江实验室开放基金, 负责人, 2020-2022.
5. 排序学习中的对象集结构分析与等序关系输出研究, 国家自然基金面上项目, 负责人, 2017-2020.
6. 网页表观挖掘的关键问题研究, 国家自然基金面上项目, 负责人, 2014-2017.
7. 互联网大规模用户文本内容的语义抽取与识别, 天津市自然基金重点项目, 负责人, 2020-2022.
8. 工业控制电路智能解析, 企业横向研发项目, 负责人, 2022-2024.
9. 面向商业智能的视觉信息解析, 企业横向研发项目, 负责人, 2023-2024.
1. 中国专利奖-优秀奖,2013.
2. 北京市科学技术一等奖,排名第二,2012.
3. 北京市发明专利一等奖,2012.
4. 中国人工智能学会优秀博士论文提名,2013.
5. 天津大学优秀硕士论文指导教师,2023.
6. 中国电子学会优秀硕士论文指导教师,2024.
7. 天津大学教学成果一等奖,2021.
1. Yu Zhu, Ou Wu*, Fengguang Su, Subclass-wise Logit Perturbation for Multi-label Learning, ACM Transactions on Knowledge Discovery from Data, 2025.
2. Ou Wu, Rujing Yao*, Data Optimization for Deep Learning: A Survey, IEEE Transactions on Knowledge and Data Engineering, 2025.
3. Rujing Yao, Ou Wu*, Fang Wang, Rethinking Learning Difficulty and Uncertainty of Samples with A Target Perturbation-aware Bias-Variance Decomposition, International Journal of Machine Learning and Cybernetics, 2025.
4. Xiaolin Zhou, Ou Wu*, Nan Yang, Class and Attribute-Aware Logit Adjustment for Generalized Long-Tail Learning, AAAI, 2025.
5. Xiaolin Zhou, Ou Wu*, Nan Yang, Adversarial Training with Anti-adversaries, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.
6. Fengguan Su, Ou Wu*, Weiyao Zhu, Multi-label Adversarial Attack Based on New Measures and Self-paced Weighting, IEEE Transactions on Image Processing, 2024.
7. Weiyao Zhu, Ou Wu*, Nan Yang, IRDA: Implicit data augmentation for deep imbalanced regression, Information Sciences, 2024.
8. Ou Wu*, Mengyang Li,Revisiting the Effective Number Theory for Imbalanced Learning, IEEE Transactions on Knowledge and Data Engineering, 2024.
9. Rujing Yao, Ou Wu*,A Taxonomy for Learning with Perturbation and Algorithms, ACM Transactions on Knowledge Discovery from Data, 2024.
10. Weiyao Zhu, Ou Wu*, Fengguang Su, Yingjun Deng, Exploring the Learning Difficulty of Data: Theory and Measure, ACM Transactions on Knowledge Discovery from Data, 2024.
11 .Xiaolin Zhou, Ou Wu*, Mengyang Li,Investigating the Sample Weighting Mechanism Using an Interpretable Weighting Framework, IEEE Transactions on Knowledge and Data Engineering, 2023.
12. Xiaolin Zhou, Ou Wu*,Which Samples Should be Learned First: Easy or Hard? IEEE Transactions on Neural Networks and Learning Systems,2023.
13. Mengyang Li, Fengguang Su, Ou Wu*, Ji Zhang,Class-level Logit Perturbation, IEEE Transactions on Neural Networks and Learning Systems,2023.
14. Xiaolin Zhou, Nan Yang, Ou Wu*,Combining Adversaries with Anti-adversaries in Training, AAAI, 2023.
15. Rujing Yao, Yingchun Ye, Ji Zhang, Shuxiao Li, Ou Wu*, Exploring Developments of the AI Field from the Perspective of Methods, Datasets, and Metrics, Information Processing and Management (IP&M), 2023.
16. Yu Zhu, Yingchun Ye, Mengyang Li, Ji Zhang, Ou Wu*, Investigating Annotation Noise for Named Entity Recognition. Neural Computing Application, 2023.
17. Ou Wu*, Tao Yang, Mengyang Li, Ming Li,Two-Level LSTM for Sentiment Analysis With Lexicon Embedding and Polar Flipping,IEEE Transactions on Cybernetics,2022.
18. Tao Yang, Qing Yin, Lei Yang, Ou Wu*, Aspect-Based Sentiment Analysis with New Target Representation and Dependency Attention, IEEE Transactions on Affective Computing, 2022.
19. Rujing Yao, Linlin Hou, Lei Yang, Jie Gui, Ou Wu*, Deep human answer understanding for natural reverse QA, Knowledge Based System, 2022.
20. Yu Zhu, Ou Wu*, Elementary discourse units with sparse attention for multi-label emotion classification, Knowledge Based System, 2022.
21. Xiaoling Zhou, Ou Wu*, Chao Jiang, Increasing naturalness of human-machine dialogue: The users' choices inference of options in machine-raised questions, Knowledge Based System, 2022.
22. Mengyang Li, Fengguang Su, Ou Wu*,Ji Zhang, Logit Perturbation, AAAI, 2022.
23. Xiaolin Zhou, Ou Wu*, Weiyao Zhu, Ziyang Liang, Understanding Difficulty-Based Sample Weighting with a Universal Difficulty Measure, ECML/PKDD, 2022.
24. Fengguang Su, Yu Zhu, Ou Wu*, Yingjun Deng, Submodular Meta Data Compiling for Meta Optimization, ECML/PKDD, 2022.
25. Rui Wang, Weixuan Xiong, Qing-Hu Hou, Ou Wu*, Tackling the Imbalance for GNNs. IJCNN, 2022,
26. Rui Wang, Shijie Li, Qing Yin, Ji Zhang, Rujing Yao, Ou Wu*, Improved PageRank and New Indices for Academic Impact Evaluation Using AI Papers as Case Studies, Journal of Information Science, 2022.
27. Tao Yang, Rujing Yao, Qing Yin, Qiang Tian, Ou Wu*, Mitigating sentimental bias via a polar attention mechanism. International Journal of Data Science and Analytic, 2021.
28. Pinlong Zhao, Zefeng Han, Qing Yin, Shuxiao Li, Ou Wu*, Sentiment analysis via dually-born-again network and sample selection. Intelligent Data Analysis, 2021.
29. Rui Wang, Xiaoling Zhou, Jian Wu, Ou Wu*, Inter-subdiscipline Analysis Based on Mathematical Statements. JCDL 2020.
30. Pinlong Zhao, Linlin Hou, Ou Wu*, Modeling sentiment dependencies with graph convolutional networks for aspect-level sentiment classification, Knowledge Based System, 2020.
31. Qing Yin, Guan Luo, Xiaodong Zhu, Qinghua Hu, Ou Wu*, Semi-interactive Attention Network for Answer Understanding in Reverse-QA. PAKDD, 2019:
32. Ou Wu*, Mengqiao Han, Screenshot-based color compatibility assessment and transfer for Web pages. Multimedia Tools and Applications, 2018.
33. Ou Wu*, Xue Mao, Weiming Hu, Iteratively Divide-and-Conquer Learning for Nonlinear Classification and Ranking. ACM Transactions on Intelligent System and Technology, 2018.
34. Ou Wu*, Classifier Ensemble by Exploring Supplementary Ordering Information. IEEE Transactions on Knowledge and Data Engineering, 2018.
35. Yunyan Duan, Ou Wu*, Learning With Auxiliary Less-Noisy Labels, IEEE Transactions on Neural Networks and Learning Systems, 2017.
36. Ou Wu*, Qiang You, Fen Xia, Lei Ma, Weiming Hu, Listwise Learning to Rank from Crowds. ACM Transactions on Knowledge Discovery from Data, 2016
37. Ou Wu*, Qiang You, Xue Mao, Fen Xia, Fei Yuan, Weiming Hu, Listwise Learning to Rank by Exploring Structure of Objects, IEEE Transactions on Knowledge and Data Engineering, 2016.
38. Ou Wu*, Haiqiang Zuo, Weiming Hu, Bing Li, Multimodal Web Aesthetics Assessment Based on Structural SVM and Multitask Fusion Learning. IEEE Transactions on Multimedia, 2016
39. Xue Mao, Zhouyu Fu, Ou Wu*, Weiming Hu, Optimizing Locally Linear Classifiers with Supervised Anchor Point Learning. IJCAI 2015
40. Ou Wu, Ruiguang Hu, Xue Mao, Weiming Hu, Quality-Based Learning for Web Data Classification. AAAI 2014
41. Xue Mao, Ou Wu, Weiming Hu, Peter O'Donovan, Nonlinear Classification via Linear SVMs and Multi-Task Learning. CIKM 2014
42. Ou Wu, Shuxiao Li, Honghui Dong, Ying Chen, Weiming Hu, Learning from Multi-User Multi-Attribute Annotations. SDM 2014
43. Ou Wu, Weiming Hu, Lei Shi, Measuring the Visual Complexities of Web Pages. ACM Trans. Web 2013.
44. Ou Wu, Weiming Hu, Stephen J. Maybank, Mingliang Zhu, Bing Li, Efficient Clustering Aggregation Based on Data Fragments. IEEE Trans. Syst. Man Cybern. Part B. 2012
45. Ou Wu, Weiming Hu, Jun Gao, Learning to predict the perceived visual quality of photos. ICCV, 2011.
46. Ou Wu, Weiming Hu, Jun Gao, Learning to Rank under Multiple Annotators. IJCAI, 2011.
47. Ou Wu, Yunfei Chen, Bing Li, Weiming Hu, Evaluating the visual quality of web pages using a computational aesthetic approach. WSDM. 2011
48. Ou Wu, Weiming Hu, Bing Li, Group ranking with application to image retrieval. CIKM, 2010.
49. Ou Wu, Jun Gao, Weiming Hu, Bing Li, Mingliang Zhu, Identifying Multi-instance Outliers. SDM, 2010.
50. Ou Wu, Yunfei Chen, Bing Li, Weiming Hu, Learning to evaluate the visual quality of web pages. WWW, 2010.
1. 赵品龙:杭州电子科技大学网络安全学院,讲师(2020年博士毕业生);
2. 朱玉:天津商业大学理学院,讲师 (2023年博士毕业生);
3. 李蒙阳:天津师范大学人工智能学院,讲师(2024年博士毕业生);
4. 姚汝婧:南开大学商学院,博士生 (2021级硕士毕业生);
5. 祝蔚瑶:天津大学应用数学中心,博士生;
6. 周江邻:天津大学应用数学中心,博士生;
7. 章建豪:国科大杭高院智能学院,硕士生;
1. 国科大杭高院教学委员会委员(2025-)
2. 本科生专业核心课程:数据科学导论(2020-2023);
2. 本科生选修课程: 深度学习(2021-2023);
-
工作经历
-
教育背景
-
研究方向
-
博士后、研究生与实习生招募意向
-
近期主要资助
-
相关奖励
-
主要学术论文(*表示通讯作者)
-
近期合作的往届、在学研究生
-
教学情况
-
Contact Me