-
1个人简介
-
2研究领域(Research Topics)
-
3教育背景(Education Backgroud)
-
4工作经历(Work Experience)
-
5主持项目(Grants)
-
6主要论文(Publications)
-
7授权专利
-
8指导学生
-
9学生获奖或立项项目
-
10学术兼职
-
11Contact Me
吴汉瑞,男,博士,暨南大学副教授、硕士生导师,2023年广州市青年科技人才托举对象,研究领域为数据挖掘与人工智能。本科和博士毕业于华南理工大学,2020-2021年于香港大学从事博士后研究工作。目前已发表学术论文40余篇,其中以第一作者或通讯作者发表论文23篇(含IEEE/ACM Trans. 期刊15篇,CCF-A或中科院一区期刊13篇,CCF-B类期刊6篇),包括国际顶级期刊IEEE TPAMI、IEEE TKDE、IEEE TIP、IEEE TSC、ACM TOIS、PR、ML等,1篇IEEE TPAMI论文入选高被引论文;主持国家自然科学青年基金项目1项、广州市青年科技人才托举工程项目1项、广州市基础与应用基础基金项目1项、中央高校青年基金项目1项(已结题)。获2024年度广东省人工智能产业协会自然科学奖二等奖(排名第二)、2023年度广东省第三届计算机科学青年学术秀二等奖。
迁移学习、图学习、推荐系统以及这些技术在脑机接口上的应用
2009.09-2013.07 华南理工大学软件学院 本科生
2015.09-2020.07 华南理工大学软件学院 硕博连读
暨南大学(2022.01-),信息科学技术学院计算机科学系,副教授、硕士生导师
香港大学(2020.10-2021.10),理学院数学系,博士后
[01] 国家自然科学基金青年科学基金项目(62206111),2023.01-2025.12,主持,在研
[02] 广州市青年科技人才托举工程项目2023(QT-2023-017),2023.01-2024.12,主持,在研
[03] 广州市基础与应用基础基金项目(2023A04J1058),2023.01-2025.12,主持,在研
[04] 中央高校青年基金项目(21622326),2022.01-2023.12,主持,结题
[22] Hanrui Wu, Zhengyan Ma, Zhenpeng Guo, Yanxin Wu, Jia Zhang, Guoxu Zhou, Jinyi Long, Online Privacy-Preserving EEG Classification by Source-Free Transfer Learning. IEEE Transactions on Neural Systems and Rehabilitation Engineering (TNSRE), 2024, 32: 3059-3070. (JCR Q1, IF: 4.8)
[21] Hanrui Wu, Qinmei Xie, Zhuliang Yu, Jia Zhang, Siwei Liu, Jinyi Long, Unsupervised Heterogeneous Domain Adaptation for EEG Classification. Journal of Neural Engineering (JNE), 2024, 21(4), 046018. (JCR Q2, IF: 4.0)
[20] Guangliang He, Zhen Zhang*, Hanrui Wu*, Sanchuan Luo, Yudong Liu, KGCNA: Knowledge Graph Collaborative Neighbor Awareness Network for Recommendation. IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI), 2024, 8 (4): 2736-2748. (JCR Q2, IF: 5.3)
[19] Hanrui Wu, Yanxin Wu (本科生), Nuosi Li, Min Yang, Jia Zhang, Michael K. Ng, Jinyi Long, High-order Proximity and Relation Analysis for Cross-network Heterogeneous Node Classification. Machine Learning (ML), 2024, 1-26. (Top, JCR Q1, IF: 7.5)
[18] Hanrui Wu, Lei Tian, Yanxin Wu, Jia Zhang, Michael K. Ng, Jinyi Long, Transferable Graph Auto-Encoders for Cross-network Node Classification. Pattern Recognition (PR), 2024, 150: 110334 (Top, JCR Q1, IF: 8.0)
[17] Hanrui Wu, Andy Yip, Jinyi Long, Jia Zhang, Michael K. Ng, Simplicial Complex Neural Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2024, 46 (1): 561-575 (ESI Highly Cited Paper, Top, JCR Q1, CCF-A, IF: 23.6, JNU link & HKBU link)
[16] Hanrui Wu, Nuosi Li, Ka Ho Kwok, Xuheng Cai, Jia Zhang, Jinyi Long, Michael K. Ng, Feature Matching Machine for Cold-start Recommendation. IEEE Transactions on Services Computing (TSC), 2024, 17(1): 98-112 (Top, JCR Q1, CCF-A, IF: 8.1)
[15] Hanrui Wu, Nuosi Li, Jia Zhang, Sentao Chen, Michael K. Ng, Jinyi Long, Collaborative Contrastive Learning for Hypergraph Node Classification. Pattern Recognition (PR), 2024, 146: 109995 (Top, JCR Q1, IF: 8.0)
[14] Hanrui Wu, Yuguang Yan, Michael K. Ng, Hypergraph Collaborative Network on Vertices and Hyperedges. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2023, 45(3): 3245-3258 (Top, JCR Q1, CCF-A, IF: 24.314)
[13] Hanrui Wu, Chung Wang Wong, Jia Zhang, Yuguang Yan, Dahai Yu, Jinyi Long, Michael K. Ng, Cold-start Next-item Recommendation by User-Item Matching and Auto-encoders. IEEE Transactions on Services Computing (TSC), 2023, 16 (4), 2477-2489 (Top, JCR Q1, CCF-A, IF: 11.019)
[12] Hanrui Wu, Jinyi Long, Nuosi Li, Dahai Yu, Michael K. Ng, Adversarial Auto-encoder Domain Adaptation for Cold-start Recommendation with Positive and Negative Hypergraphs. ACM Transactions on Information Systems (TOIS), 2023, 41(2): 1-25 (Top, JCR Q1, CCF-A, IF: 4.657)
[11] Hanrui Wu, Yuguang Yan, Guosheng Lin, Min Yang, Michael K. Ng, Qingyao Wu, Iterative Refinement for Multi-source Visual Domain Adaptation. IEEE Transactions on Knowledge and Data Engineering (TKDE), 2022, 34 (6), 2810-2823 (Top, JCR Q1, CCF-A, IF: 9.235)
[10] Hanrui Wu*, Michael Ng. Hypergraph Convolution on Nodes-Hyperedges Network for Semi-Supervised Node Classification. ACM Transactions on Knowledge Discovery from Data (TKDD), 2022, 16(4): 1-19. (Top, JCR Q2, CCF-B, IF: 4.157)
[09] Hanrui Wu*, Michael Ng. Multiple Graphs and Low-Rank Embedding for Multi-Source Heterogeneous Domain Adaptation. ACM Transactions on Knowledge Discovery from Data (TKDD), 2022, 16(4): 1-25. (Top, JCR Q2, CCF-B, IF: 4.157)
[08] Hanrui Wu*, Hong Zhu, Yuguang Yan, Jiaju Wu, Yifan Zhang, Michael K. Ng, Heterogeneous Domain Adaptation by Information Capturing and Distribution Matching. IEEE Transactions on Image Processing (TIP), 2021, vol. 30, pp. 6364-6376. (Top, JCR Q1, CCF-A, IF: 11.041)
[07] Hanrui Wu*, Qingyao Wu, Michael K. Ng, Knowledge Preserving and Distribution Alignment for Heterogeneous Domain Adaptation. ACM Transactions on Information Systems (TOIS), 2021, 40(1): 1-29. (Top, JCR Q1, CCF-A, IF: 4.657)
[06] Hanrui Wu*, Yuguang Yan, Sentao Chen, Xiangkang Huang, Qingyao Wu, Michael K. Ng, Joint Visual and Semantic Optimization for Zero-shot Learning. Knowledge-Based Systems (KBS), 2021, 215: 106773. (JCR Q1, IF: 8.139)
[05] Hanrui Wu, Yuguang Yan, Michael K. Ng, Qingyao Wu, Domain-attention Conditional Wasserstein Distance for Multi-source Domain Adaptation. ACM Transactions on Intelligent Systems and Technology (TIST), 2020, 11(4): 1-19. (JCR Q1, IF: 10.489)
[04] Hanrui Wu, Yuguang Yan, Yuzhong Ye, Michael K. Ng, Qingyao Wu, Geometric Knowledge Embedding for Unsupervised Domain Adaptation. Knowledge-Based Systems (KBS), 2020, 191: 105155. (JCR Q1, IF: 8.139)
[03] Hanrui Wu, Yuguang Yan, Yuzhong Ye, Huaqing Min, Michael K. Ng, Qingyao Wu, Online Heterogeneous Transfer Learning by Knowledge Transition. ACM Transactions on Intelligent Systems and Technology (TIST), 2019, 10(3): 1-19. (JCR Q1, IF: 10.489)
[02] Qingyao Wu, Xiaoming Zhou, Yuguang Yan*, Hanrui Wu*, Huaqing Min, Online Transfer Learning by Leveraging Multiple Source Domains. Knowledge and Information Systems (KAIS), 2017, 52(3): 687-707. (JCR Q2, CCF-B, IF: 2.531)
[01] Qingyao Wu#, Hanrui Wu#, Xiaoming Zhou, Mingkui Tan, Yonghui Xu, Yuguang Yan, Tianyong Hao, Online Transfer Learning with Multiple Homogeneous or Heterogeneous Sources. IEEE Transactions on Knowledge and Data Engineering (TKDE), 2017, 29(7): 1494-1507. (Top, JCR Q1, CCF-A, IF: 9.235)
[01] 一种面向冷启动推荐的对抗自编码迁移学习方法. 吴汉瑞;李诺思;龙锦益. 授权专利号:ZL 202210976839.3
[02] 一种基于图卷积网络的无监督迁移学习方法. 吴庆耀;吴汉瑞;叶宇中. 授权专利号:ZL201910899732.1
[01] 吴妍欣(暨南大学2020级本科生 -- 暨南大学2024级硕士研究生,获2024届暨南大学本科生“优秀毕业生”、“有作为、有贡献”毕业生荣誉称号)
[02] 汤济玮(暨南大学2020级本科生 -- 清华大学2024级硕士研究生,获2024届暨南大学本科生“优秀毕业生”荣誉称号,暨南大学优秀毕业论文)
[03] 李诺思(暨南大学2021级硕士研究生,获2023年国家奖学金,2024届暨南大学优秀毕业研究生)
[04] 谢辉阳(暨南大学2022级本科生,暨南大学本科优异学生培养对象,获2024年国家奖学金)
[01] 李瑞来,聂锐驰,罗倩林,黄毓乾,付美辰;2024年度大学生创新创业训练计划项目,指导老师:吴汉瑞(国家级立项)
[02] 谢辉阳,钟展鸿,冉龙军,王帅,安桂贤;2024年度大学生创新创业训练计划项目,指导老师:吴汉瑞(省级立项)
[03] 吴妍欣,路紫薇,彭梓伦,邱嘉萌;2023年度大学生创新创业训练计划项目,指导老师:吴汉瑞(省级立项,优秀结题)
[04] 汤济玮,赵祎明,周卓能,张橙睿,钟展鸿;2023年度大学生创新创业训练计划项目,指导老师:吴汉瑞,龙锦益(校级立项)
[05] 周卓能,汤济玮,赵祎明,罗泳欣,张橙睿,钟展鸿;基于图卷积神经网络、超图卷积神经网络与对比学习的药物-疾病关系预测,2023年暨南大学第十届“挑战杯”大学生课外学术科技作品竞赛,指导老师:龙锦益,吴汉瑞(校级三等奖)
[01] 国家自然科学基金项目评审专家(2023),广州市科技专家,CCF高级会员(2024-),CCF传播工作委员会委员(2024-),IEEE会员(2023-),CSIG会员(2024-),亚太人工智能学会AAIA会员
[02] Electronics, Guest Editor
[03] 担任以下国际期刊审稿人:
IEEE Transactions on Neural Networks and Learning Systems,
IEEE Transactions on Knowledge and Data Engineering,
IEEE Transactions on Cybernetics,
IEEE Transactions on Services Computing,
ACM Transactions on Knowledge Discovery from Data,
IEEE Transactions on Emerging Topics in Computational Intelligence,
IEEE Journal of Biomedical and Health Informatics,
Information Sciences,
Knowledge-Based Systems,
Knowledge and Information Systems,
Information Processing & Management,
Neurocomputing,
Scientific Reports,
International Journal of Machine Learning and Cybernetics,
Neural Processing Letters,
The Journal of Supercomputing,
Signal, Image and Video Processing,
IEEE Access,
Software Impacts;
[03] 担任以下国际会议程序委员会成员:
IJCAI 2021,
IJCAI-ECAI 2022,
IJCAI 2023,
AAAI 2023, 2024, 2025
-
个人简介
-
研究领域(Research Topics)
-
教育背景(Education Backgroud)
-
工作经历(Work Experience)
-
主持项目(Grants)
-
主要论文(Publications)
-
授权专利
-
指导学生
-
学生获奖或立项项目
-
学术兼职
-
Contact Me