[53]. Wei W, Mengshan L, Yan W, Lixin G, Cluster energy prediction based on multiple strategy fusion whale optimization algorithm and light gradient boosting machine, BMC Chemistry, 2024; 18: 24. https://doi.org/10.1186/s13065-024-01127-0.
[52]. Mengshan L, Wei W, Bingsheng C, Lixin G, Yan W, et al., Multi-scale model integrated particle dynamics and evolutionary algorithm with the coarse-grained particle partitioning ratio strategy for calculating the dissolution behaviors of supercritical carbon dioxide in polymer fluids, Journal Of Molecular Liquids, 2024; 396: 124018. https://doi.org/https://doi.org/10.1016/j.molliq.2024.124018.
[51]. Liu Y, Lai J, Hu L, Kang M, Wei S, et al., Detection of Chylous Plasma Based on Machine Learning and Hyperspectral Techniques, Applied Spectroscopy, 2024; 0: 00037028231214802. https://doi.org/10.1177/00037028231214802.
[50]. Hu W, Li M, Xiao H, Guan L, Essential genes identification model based on sequence feature map and graph convolutional neural network, Bmc Genomics, 2024; 25: 47. https://doi.org/10.1186/s12864-024-09958-w.
[49]. Yan W, Tan L, Mengshan L, Weihong Z, Sheng S, et al., Time series-based hybrid ensemble learning model with multivariate multidimensional feature coding for DNA methylation prediction, Bmc Genomics, 2023; 24: 758. https://doi.org/10.1186/s12864-023-09866-5.
[48]. Yan W, Tan L, Meng-Shan L, Sheng S, Jun W, et al., SaPt-CNN-LSTM-AR-EA: a hybrid ensemble learning framework for time series-based multivariate DNA sequence prediction, Peerj, 2023; 11: e16192. https://doi.org/10.7717/peerj.16192.
[47]. Wei S, Liu Y, Li M, Huang H, Zheng X, et al., DCCaps-UNet: A U-Shaped Hyperspectral Semantic Segmentation Model Based on the Depthwise Separable and Conditional Convolution Capsule Network, Remote Sensing, 2023; 15: 3177. https://doi.org/10.3390/rs15123177.
[46]. Liu Y, Wei S, Huang H, Lai Q, Li M, et al., Naming Entity recognition of citrus pests and diseases based on the BERT-BiLSTM-CRF model, Expert Systems With Applications, 2023: 121103. https://doi.org/https://doi.org/10.1016/j.eswa.2023.121103.
[45]. Lian SY, Guan LX, Peng ZZ, Zeng G, Li MS, et al., Retrieval of leaf chlorophyll content in Gannan navel orange based on fusing hyperspectral vegetation indices using machine learning algorithms, Ciencia Rural, 2023; 53: e20210630. https://doi.org/10.1590/0103-8478cr20210630.
[44]. Lian S, Guan L, Pei J, Zeng G, Li M, Identification of apple leaf diseases using C-Grabcut algorithm and improved transfer learning base on low shot learning, Multimedia Tools And Applications, 2023: 10.1007/s11042-11023-16602-11044. https://doi.org/10.1007/s11042-023-16602-4.
[43]. Li M, Zeng M, Zhang H, Chen H, Guan L, Biological Activity Predictions of Ligands Based on Hybrid Molecular Fingerprinting and Ensemble Learning, Acs Omega, 2023; 8: 5561-5570. https://doi.org/10.1021/acsomega.2c06944.
[42]. Hu W, Guan L, Li M, Prediction of DNA Methylation based on Multi-dimensional feature encoding and double convolutional fully connected convolutional neural network, Plos Computational Biology, 2023; 19: e1011370. https://doi.org/10.1371/journal.pcbi.1011370.
[41]. Biyu H, GuangWen T, Ming Z, Lixin G, Mengshan L, A lncRNA-disease association prediction model based on the two-step PU learning and fully connected neural networks, Heliyon, 2023; 9: e17726. https://doi.org/10.1016/j.heliyon.2023.e17726.
[40]. Wu Y, Zhang H, Li M-s, Sheng S, Wang J, et al., A double-population chaotic self-adaptive evolutionary dynamics model for the prediction of supercritical carbon dioxide solubility in polymers, Royal Society Open Science, 2022; 9: 211419. https://doi.org/doi:10.1098/rsos.211419.
[39]. Li M, Zeng M, Chen B, Guan L, Wu Y, et al., A microscopic computational model based on particle dynamics and evolutionary algorithm for the prediction of gas solubility in polymers, Journal Of Molecular Liquids, 2022; 365: 120169. https://doi.org/https://doi.org/10.1016/j.molliq.2022.120169.
[38]. Li M, Chen H, Zhang H, Zeng M, Chen B, et al., Prediction of the Aqueous Solubility of Compounds Based on Light Gradient Boosting Machines with Molecular Fingerprints and the Cuckoo Search Algorithm, Acs Omega, 2022; 7: 42027-42035. https://doi.org/10.1021/acsomega.2c03885.
[37]. Chen H, Zeng M, Zhang H, Chen B, Guan L, et al., Prediction of Carbon Dioxide Solubility in Polymers Based on Adaptive Particle Swarm Optimization and Least Squares Support Vector Machine, ChemistrySelect, 2022; 7: e202104447. https://doi.org/https://doi.org/10.1002/slct.202104447.
[36]. 王都阳, 蔡圳南, 黄兴元, 王龙, 李孟山, 超临界CO_2在聚苯乙烯熔体中的扩散系数, 中国塑料, 2021; 35: 63-70. https://doi.org/10.19491/j.issn.1001-9278.2021.02.011.
[35]. Chen B, Chen H, Li M, Automatic quality inspection system for discrete manufacturing based on the Internet of Things, Computers & Electrical Engineering, 2021; 95: 107435. https://doi.org/https://doi.org/10.1016/j.compeleceng.2021.107435.
[34]. 王思鹏, 黄兴元, 王都阳, 李孟山, 柳和生, 不同工艺条件下PS/ScCO_2均相体流变特性研究, 工程塑料应用, 2020; 48: 46-50+62.
[33]. Li MS, Lian SY, Wang F, Zhou YY, Chen BS, et al., Neural network modeling based double-population chaotic accelerated particle swarm optimization and diffusion theory for solubility prediction, Chemical Engineering Research & Design, 2020; 155: 98-107. https://doi.org/10.1016/j.cherd.2020.01.003.
[32]. Li MS, Lian SY, Wang F, Zhou YY, Chen BS, et al., A decision support system using hybrid AI based on multi-image quality model and its application in color design, Future Generation Computer Systems-the International Journal of Escience, 2020; 113: 70-77. https://doi.org/10.1016/j.future.2020.06.034.
[31]. Li M, Zhang J, Zou Y, Wang F, Chen B, et al., Models for the solubility calculation of a CO2/polymer system: A review, Materials Today Communications, 2020; 25: 101277. https://doi.org/10.1016/j.mtcomm.2020.101277.
[30]. 王文凌, 黄兴元, 王都阳, 李孟山, 柳和生, 一种测量超临界CO_2在聚合物中溶解行为的新装置, 中国塑料, 2019; 33: 97-102.
[29]. Wang D, Huang X, Cai Z, Wang W, Wang L, et al., Experimental and Simulation Study on the Dissolved Amount and Dissolution Rate of Supercritical CO2 in Polystyrene Melt, ACS Omega, 2019; 4: 22464-22474. https://doi.org/10.1021/acsomega.9b03148.
[28]. Li MS, Lian SY, Wang F, Zhou YY, Chen BS, et al., Prediction Model of Organic Molecular Absorption Energies based on Deep Learning trained by Chaos-enhanced Accelerated Evolutionary algorithm, Scientific Reports, 2019; 9: 17261. https://doi.org/10.1038/s41598-019-53206-1.
[27]. Chen BS, Zhang HJ, Li MS, Prediction of pK(a) values of neutral and alkaline drugs with particle swarm optimization algorithm and artificial neural network, Neural Computing & Applications, 2019; 31: 8297-8304. https://doi.org/10.1007/s00521-018-3956-5.
[26]. 李孟山, 张淮锦, 黄兴元, 柳和生, 陈炳生, et al., 混合人工神经网络溶解预测进展, 塑料, 2018; 47: 73-76+93.
[25]. Li MS, Zhang HJ, Liu L, Chen BS, Guan LX, et al., A Quantitative Structure-Property Relationship Model Based on Chaos-Enhanced Accelerated Particle Swarm Optimization Algorithm and Back Propagation Artificial Neural Network, Applied Sciences-Basel, 2018; 8: 1121. https://doi.org/10.3390/app8071121.
[24]. Li MS, Zhang HJ, Chen BS, Wu Y, Guan LX, Prediction of pKa Values for Neutral and Basic Drugs based on Hybrid Artificial Intelligence Methods, Scientific Reports, 2018; 8: 3991. https://doi.org/10.1038/s41598-018-22332-7.
[23]. Li MS, Liu L, Huang XY, Liu HS, Chen BS, et al., Prediction of supercritical carbon dioxide solubility in polymers based on hybrid artificial intelligence method integrated with the diffusion theory, Rsc Advances, 2017; 7: 49817-49827. https://doi.org/10.1039/c7ra09531g.
[22]. Li M, Xu Q, Gao D, Chen B, Yuan S, et al., Color Decision System Based on Hybrid Intelligent Method and Multi-users' Images, Journal of Computer-Aided Design and Computer Graphics, 2017; 29: 2091-2099.
[21]. Li M, Wu W, Chen B, Guan L, Wu Y, Prediction of properties of starch matrix foam composites by radial basis function artificial neural network based on improved particle swarm optimization, Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2017; 34: 2882-2889. https://doi.org/10.13801/j.cnki.fhclxb.20170320.005.
[20]. 李孟山, 黄兴元, 柳和生, 陈炳生, 袁寿财, 超临界CO_2在聚合物中的溶解计算研究进展, 化学通报, 2016; 79: 610-615.
[19]. Xia R, Huang X, Li M, Starch foam material performance prediction based on a radial basis function artificial neural network trained by bare-bones particle swarm optimization with an adaptive disturbance factor, Journal Of Applied Polymer Science, 2016; 133. https://doi.org/10.1002/app.44252.
[18]. 熊鹏, 黄兴元, 柳和生, 李孟山, 微孔塑料挤出发泡数值模拟, 高分子材料科学与工程, 2015: 104-107+114.
[17]. 熊鹏, 黄兴元, 柳和生, 李孟山, 微孔塑料挤出发泡的冷却方式研究, 塑料工业, 2015: 44-46.
[16]. 江青松, 柳和生, 熊爱华, 何建涛, 李孟山, 长纤维增强聚合物注塑流动纤维取向分布数值模拟, 高分子材料科学与工程, 2015: 123-127.
[15]. Xiong P, Huang X, Liu H, Li M, Numerical simulation of microcellular plastics extrusion foaming, Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2015; 31: 104-107 and 114.
[14]. Ru-Ting X, Xing-Yuan H, Predictive calculation of carbon dioxide solubility in polymers, Rsc Advances, 2015; 5: 76979-76986. https://doi.org/10.1039/c5ra15109k.
[13]. Li M, Huang X, Liu H, Liu B, Wu Y, et al., Solubility prediction of supercritical carbon dioxide in 10 polymers using radial basis function artificial neural network based on chaotic self-adaptive particle swarm optimization and K-harmonic means, Rsc Advances, 2015; 5: 45520-45527. https://doi.org/10.1039/c5ra07129a.
[12]. Jiang Q, Liu H, Xiong A, He J, Li M, Numerical simulation on the fiber orientation distribution during flow in injection molding of long fiber reinforced polymer, Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2015; 31: 123-127.
[11]. 熊鹏, 黄兴元, 柳和生, 李孟山, 气辅技术在微孔塑料连续挤出中的应用研究, 塑料工业, 2014: 52-55.
[10]. 刘斌, 黄兴元, 李孟山, 基于半经验模型的CO_2在聚合物中的溶解度计算, 塑料, 2014: 11-15.
[9]. 黄兴元, 熊鹏, 柳和生, 李孟山, T型口模气辅段长度对挤出胀大的影响, 工程塑料应用, 2014: 50-53.
[8]. 李孟山, 黄兴元, 柳和生, 柳炳祥, 武燕, et al., 基于混沌自适应粒子群人工神经网络的气体在聚合物中的溶解模型, 化学学报, 2013; 71: 1053-1058. https://doi.org/10.6023/A13020193.
[7]. 邓小珍, 柳和生, 黄益宾, 黄兴元, 李孟山, 气辅共挤出界面位置对挤出胀大的影响, 高分子材料科学与工程, 2013: 114-118.
[6]. Wu Y, Liu BX, Li MS, Tang KZ, Wu YB, Prediction of CO2 Solubility in Polymers by Radial Basis Function Artificial Neural Network Based on Chaotic Self-adaptive Particle Swarm Optimization and Fuzzy Clustering Method, Chinese Journal Of Chemistry, 2013; 31: 1564-1572. https://doi.org/10.1002/cjoc.201300550.
[5]. Liu HS, Deng XZ, Huang YB, Huang XY, Li MS, Three-dimensional viscoelastic simulation of the effect of wall slip on encapsulation in the coextrusion process, Journal Of Polymer Engineering, 2013; 33: 625-632. https://doi.org/10.1515/polyeng-2013-0108.
[4]. Li MS, Huang XY, Liu HS, Liu BX, Wu Y, et al., Prediction of gas solubility in polymers by back propagation artificial neural network based on self-adaptive particle swarm optimization algorithm and chaos theory, Fluid Phase Equilibria, 2013; 356: 11-17. https://doi.org/10.1016/j.fluid.2013.07.017.
[3]. Li MS, Huang XY, Liu HS, Liu BX, Wu Y, et al., Solubility prediction of gases in polymers using fuzzy neural network based on particle swarm optimization algorithm and clustering method, Journal Of Applied Polymer Science, 2013; 129: 3297-3303. https://doi.org/10.1002/app.39059.
[2]. Li MS, Huang XY, Liu HS, Liu BX, Wu Y, et al., Solubility Prediction of Gases in Polymers based on Chaotic Self-adaptive Particle Swarm Optimization Artificial Neural Networks, Acta Chimica Sinica, 2013; 71: 1053-1058. https://doi.org/10.6023/a13020193.
[1]. Li MS, Huang XY, Liu HS, Liu BX, Wu Y, Prediction of the gas solubility in polymers by a radial basis function neural network based on chaotic self-adaptive particle swarm optimization and a clustering method, Journal Of Applied Polymer Science, 2013; 130: 3825-3832. https://doi.org/10.1002/app.39525.