贝叶斯统计是英国学者托马斯·贝叶斯在《论有关机遇问题的求解》中提出一种归纳推理的理论,后被一些统计学者发展为一种系统的统计推断方法,称为贝叶斯方法。本文旨在通过实际的简单例子使大家对贝叶斯统计方法有更直观的认识并对其理念有更深刻的理解。
通过贝叶斯推理来辨别“买东西的人”和“随便逛逛的人”
商店里的售货员最关心的问题莫过于“这位顾客究竟是来买东西的,还是随便逛逛而已”。所以对于店员来说,通过顾客的行为来揣测他们的真实想法,是一项重要的本领。下文将具体介绍“将店员的判断方法数值化”的方法,该方法恰巧适用贝叶斯统计学。进而言之,通过该事例,我们也可以弄懂贝叶斯统计学的概念。
假设一个场景:面前有一位顾客,此时你需要做的是,推测该顾客究竟是“来买东西的人”,还是“随便逛逛的人”。只有做出正确的判断,才能采取正确的接待方法。
推算的第一步:将两种顾客(来买东西的顾客、随便逛逛的顾客)的比例进行数值分配。这句话的意思是:假设面前的这位顾客一定属于两种中的一种,以此为前提,该顾客为第一种或第二种的可能性分别为多少?将这个可能性用数值表示出来。
在贝叶斯统计学中,这种“某种类别的概率(比例)”有一个专有名词,叫作“先验概率”。“事前”的含义是:在获得某项信息之前。
此处的“信息”是指附加的状况,比如顾客忽然过来询问。通过“过来询问”这一信息,可以对顾客类别的推算进行修改,而“先验概率”是指,在“过来询问”或“不过来询问”的情况发生之前进行的概率判断。
根据自己的经验,每5位顾客中就有1位是“来买东西的”,也就是说,这一部分顾客占全体的20%(0.2),那么剩下“随便逛逛”部分的比例便为80%(0.8)。这两个数字,便是两类顾客的“先验概率”。
在这个事例中,在观察面前顾客的行为之前,判断“该顾客是属于概率0.2的买东西的人,还是概率0.8的随便逛逛的人”,这个过程被称为“某一类别的先验分布”,如图1所示。
图表中的大长方形被分割为两部分,两部分的面积所占比例分别为0.2和0.8,这正是分割时的诀窍。本文将在后面逐渐阐明:“面积”的概念在贝叶斯概率的计算中,起着重要的作用。
该图可以理解为:将整体分为两种不同的情况。这意味着,自己所处的环境为A或B中的一个,A情况下的顾客为“来买东西的人”,B情况下的顾客为“随便逛逛的人”,但不知道究竟是A还是B。只是先在头脑中构筑一个大致的印象。哲学上将这种见解称为“可能世界”,在进行逻辑推算或概率推算时,采用这种“划分互不相同的可能性”的思维方法,有利于整理思路。
在这里将长方形的面积设定为0.1和0.4,两部分的比例依然为1∶4,这与设定为0.2和0.8时的比例相同。那么,为何要将面积设置为0.2和0.8呢?这是因为,用数值来计算概率的情况下,需要在多种可能性中,选取“将各部分概率相加,总和为1”的那一种,这种情况被称为“标准化条件”。
登录用户可以查看和发表评论,
请前往 登录 或 注册。