隆广庆 Guangqing Long

教授/Professor of Mathematics

南宁师范大学 校长办公室

简介  ABOUT

动态   NEWS

学术   ACADEMIC

个人简介

隆广庆,二级教授,南宁师范大学党委副书记、博士生导师

【研究兴趣】

积分微分方程数值算法;特征值问题数值解法;

奇异摄动问题数值解法;界面问题高精度数值算法;

【教育经历】

1、2007.06-2009.07,中国科学院数学所博士后流动站工作。导师:许跃生;

2、2003.09-2006.06,中山大学计算数学专业,获理学博士学位。导师:陈仲英、许跃生;

3、2000.09-2003.06,中山大学计算数学专业,获理学硕士学位。导师:陈仲英、许跃生;

4、1993.09-1997.06,兰州大学计算数学专业,获理学学士学位;

【荣誉】

2016年广西高校优秀共产党员;2014年获广西高校 “卓越学者”;2013年获广西科技进步三等奖;2012年入选广西财政出国留学资助计划;2010年入选广西高校优秀人才资助计划;

【国家项目】

主持国家自然科学基金项目3项(项目号:12261062、11461011、11061008);

主要参与国家自然科学基金项目2项(项目号:11826211、11761015);

主持和参与广西科技计划项目2项(项目号:桂科2022AC06003、桂科AD20238065);

主持和参与广西自然科学基金重点项目2项(2018GXNSFDA050014,2017GXNSFDA198014);

【教学成果】

先后获广西职业教育自治区级教学成果一等奖1项(2023年);广西高等教育(研究生)自治区级教学成果二等奖1项(2023年);广西高等教育(本科)自治区级教学成果二等奖1项(2023年);广西高等教育自治区级教学成果二等奖1项(2021年)。

发表论文

【2025】

1、G. Long, H. Yang* ,L.Liu, Fast wavelet collocation method with compression technique for Steklov eigenvalue problems of Helmholtz equations,APPL MATH LET, (2025).

2、H. Yang , G. Long* , Y. Ren and S.Zhao,  An augmented fourth order domain-decomposed method with fast algebraic solvers for three-dimensional Helmholtz interface problems, JOURNAL of COMPUTATIONAL PHYSICS 524 (2025), 113742. 

3、L.Liu*, L.Xu, Z. Huang and G.Long, Supercloseness of the NIPG method on a Bakhvalov-type mesh for a singularly perturbed problem with two small parameters, APPL NUMER MATH 207 (2025), 431-449.

【2024】

1、Y. Ren, C. Li, G. Long and S.Zhao*,A multigrid-based high order finite difference method for parabolic interface problems with variable coefficients,Recent advances on two-phase flows, fluid-structure interactions, and interface problems  (ICIAM2023 · ICIAM2023-2 ).  (2024).

2、G.Long*, H. Yang and D. Cheng, Fast multi-level iteration schemes with compression technique for eigen-problems of compact integral operators, APPL NUMER MATH 198 (2024), 448-460.

3、H. Yang, S. Zhao and G. Long*, A MAC grid based FFT-AMIB solver for incompressible stokes flows with interfaces and singular forces, J COMPUT APPL MATH 450 (2024), 116019.

【2023】

1、C. Li, Y. Ren, G. Long, E. Boerman and S. Zhao, A fast sine transform accelerated high-order finite difference method for parabolic problems over irregular domains, J SCI COMPUT 95 (2023), 49.

2、L. Liu, Y. Liao and G. Long, A novel parameter-uniform numerical method for a singularly perturbed volterra integro-differential equation, COMPUT APPL MATH (2023).

3、L. Liu, Y. Liao and G. Long, Error estimate of bdf2 scheme on a bakhvalov-type mesh for a singularly perturbed volterra integro-differential equation, NETW HETEROG MEDIA 18 (2023), 547-561.

4、Y. Liao, L. B. Liu, L. Xu and G. Long, Richardson extrapolation method for 2d-spp on vb mesh singularly perturbed convection–diffusion problem on a vulanović–bakhvalov mesh, COMPUTAIONAL AND APPLIED MATHMATICS 42 (2023), no. 3, 1-20.

2021-2022

1、Y. Li, S. Yang and G. Long, Continuity of random attractors on a topological space and fractional delayed fitzhugh-nagumo equations with wz-noise, Discrete & Continuous Dynamical Systems - B 27 (2022), no. 10, 5977-6008.

2、L. B. Liu, C. Zhu and G. Long, Numerical analysis of a system of semilinear singularly perturbed first-order differential equations on an adaptive grid, MATH METHOD APPL SCI 45 (2022), no. 4, 2042-2057.

3、X. Zhu, D. Cheng and G. Long, Matched interface and boundary method for the helmholtz equation with a discretization by 4th-order 17-point fd scheme, JOURNAL of PHYSICS: Conference Series 2219 (2022), 12020.

4、C. Li, G. Long, Y. Li and S. Zhao, Alternating direction implicit (adi) methods for solving two-dimensional parabolic interface problems with variable coefficients, COMPUTATION, 9 (2021), 79.

5、H. Feng, G. Long and S. Zhao, Fft-based high order central difference schemes for poisson's equation with staggered boundaries, J SCI COMPUT 86 (2021), no. 1, 1-25.

6、G. Long, R. Jie and L. B. Liu, Multilevel augmentation methods for eigen-problems of compact integral operators, NUMER ALGORITHMS 88 (2021), 1523-1540.

7、G. Long, L. B. Liu and Z. Huang, Richardson extrapolation method on an adaptive grid for singularly perturbed volterra integro-differential equations, NUMER FUNC ANAL OPT 42 (2021), no. 7, 739-757.

CONTACT Me
Scholat.com/longguangqing
广西南宁市西乡塘区南宁师范大学明秀校区
我的主页
获取微信名片
SCHOLAT.com 学者网
ABOUT US | SCHOLAT