吴贺俊 Wu Hejun

教授/Professor

中山大学 计算机学院

简介  ABOUT

动态   NEWS

学术   ACADEMIC

中山大学计算机学院教授、博士生导师,机器智能与先进计算教育部重点实验室研究员

主要研究方向:人工智能、智能物联网、机器人集群。

目前作为项目负责人承担国家自然科学基金面上项目研究,作为项目骨干参加了国家自然科学基金重大项目和国家科技计划重点研发项目。近年在顶级国际会议和期刊包括IEEE IOT、TPDS、TWC、TKDE、TCSVT、ACM TWEB、INFOCOM等发表论文40余篇,曾获IEEE WCNC最佳论文奖,ISSNIP 最佳论文奖。

主讲的中国大学慕课《人工智能原理与实践》(课程链接:https://www.icourse163.org/course/SYSU-1463217175) 在线课提供了大量课件、视频、课题及方法和源程序,该课程于2022年评定为广东省一流课程。曾获2021年中山大学教学成果奖,2020年秋季学生评教成绩得分为99.28分,全校排名前0.03%;吴贺俊主持了多项教改项目,2016年主持的广东省物联网慕课教改项目获得优秀结题,教改论文获2022中国计算机教育大会最佳论文奖-特等奖;在2021年华为杯物联网大赛、2019 DEECAMP创新工场训练营被评为优秀导师。

学术服务:

CCF物联网专业委员会委员,CCF高级委员,教育部新工科联盟A19工委秘书长

近五年主持的主要项目:

(1)国家自然基金面上项目“智能移动传感网自主决策定位与充电关键技术研究”(62272497),2023.1-2026.12,项目主持;

(2)广州市民生科技项目“基于农业物联网的大数据服务平台建设”,2020.4-2024.3,项目主持;

(3)梅州市引进重大科技创新平台项目“面向基层大健康的人工智能辅助多疾病防治康复平台”,2020.1-2022.12,课题主持;

(4)国家自然基金面上项目“大规模异构传感网络复杂事件监测分析关键技术研究”(61672552),2017.1-2020.12,项目主持;

(5)***交通技术(**)有限公司技术开发项目“***交通****系统故障预测算法开发”,2022.12-2023.6,项目主持;

(6)****煤矿机械制造有限公司技术开发项目“传送带链条拉伸监测和疲劳破坏预警”,2022.4-2023.3,项目主持。

主要发表论文

一、 5篇代表性论著:

[1]Hejun Wu; Xinchuan Huang; Qiong Luo; Zhongheng Yang ; PPD: A Scalable and Efficient Parallel Primal-Dual Coordinate Descent Algorithm, IEEE Transactions on Knowledge and Data Engineering(TKDE), 2022, 34(4): 1958-1966 (CCF-A类期刊)

[2]Hejun Wu; Zhimin Ding; Jiannong Cao ; GROLO: Realistic Range-based Localization for Mobile IoTs through Global Rigidity, IEEE Internet of Things Journal(IOT), 2019, 6(3): 5048-5057(中科院一区期刊)

[3]Hejun Wu; Ao Ding; Weiwei Liu; Lvzhou Li; Zheng Yang ; Triangle Extension: Efficient Localizability Detection in Wireless Sensor Networks, IEEE Transactions on Wireless Communications(TWC), 2017, 16(11): 7419-7431 (中科院一区期刊)

[4]Hejun Wu; Zhongheng Yang; Jiannong Cao; Liqian Lai ; TRiForm: Formation Control for Underwater Sensor Networks With Measurement Errors, IEEE Transactions on Vehicular Technology(TVT), 2020, 69(7): 7679-7691 (JCR-Q1期刊)

[5]Hejun Wu; Baiyun Xu; Jiannong Cao; Yongkang Wang; Zhongheng Yang ; FlagLoc: Localization Using a Flag for Mobile Wireless Sensor Networks with Measurement Errors, 2020 17th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON),(CCF B类物联网顶会)

二、 物联网相关论文:

[1]Yongheng Liang(指导硕士生), Hejun Wu*, Haitao Wang, "ASM-PPO: Asynchronous and Scalable Multi-Agent PPO for Cooperative Charging." in 21st International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2022: 798-806. (CCF-B 多智能体系统顶会)

[2]Yuxin Chen(指导硕士生), Hejun Wu*, Yongheng Liang, Guoming Laiz,  "VarLenMARL: A Framework of Variable-Length Time-Step Multi-Agent Reinforcement Learning for Cooperative Charging in Sensor Networks," in 2021 18th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON) ,(CCF B类物联网顶会)

[3]Rong Gao, Zhongheng Yang, Hejun Wu*: “A Lightweight Neural Network Localization Algorithm for Structureless Wireless Sensor Networks.” 13th Wireless sensor networks conference,2019,275-288.

[4]Hejun Wu, Jiannong Cao, Xiaopeng Fan: Dynamic collaborative in-network event detection in wireless sensor networks. Telecommunication Systems, 2016,62(1): 43-58.

[5]Hejun Wu*, Jiannong Cao, Xuefeng Liu, Yang Liu: Dual-Mote: A Sensor Network testbed for high rate sensing-transmission and runtime evaluation. 2011 IEEE Wireless Communications and Networking Conference,2011: 2048-2053 (最佳论文奖)

[6]Jiannong Cao, Hejun Wu*, Xuefeng Liu, Yi Lai: iSensNet: an infrastructure for research and development in wireless sensor networks.Frontiers of Computer Science in China 2010,4(3): 339-353. 

[7]Hejun Wu, Qiong Luo: Adaptive holistic scheduling for query processing in sensor networks. J. Parallel Distrib. Comput. 2010,70(6): 657-670.

[8]Hejun Wu, Qiong Luo, Jianjun Li, Alexandros Labrinidis: Quality aware query scheduling in wireless sensor networks. Proceedings of the Sixth International Workshop on Data Management for Sensor Networks,2009.

[9]Hejun Wu, Qiong Luo, Pei Zheng, Lionel M. Ni: VMNet: Realistic Emulation of Wireless Sensor Networks. IEEE Trans. Parallel Distrib. Syst. (TPDS) 2007,18(2): 277-288.

[10]Hejun Wu, Qiong Luo: Supporting Adaptive Sampling in Wireless Sensor Networks. IEEE Wireless Communications and Networking Conference, 2007: 3442-3447.

[11]Hejun Wu, Qiong Luo, Wenwei Xue: Distributed Cross-Layer Scheduling for In-Network Sensor Query Processing. Fourth Annual IEEE International Conference on Pervasive Computing and Communications, 2006: 180-189.

三、 其他论文:

[1]Haoli Wang(指导硕士生), Hejun Wu*, and Guoming Lai, "WagerWin: An Efficient Reinforcement Learning Framework for Gambling Games."in IEEE TRANSACTIONS ON GAMES,2022 CCF-C 期刊

[2]Ruoqi Wang(指导本科生), Ziwang Huang, Haitao Wang, Hejun Wu*,"AMMASurv: Asymmetrical Multi-Modal Attention for Accurate Survival Analysis with Whole Slide Images and Gene Expression Data",in IEEE International Conference on Bioinformatics and Biomedicine (BIBM),2021.CCF-B 国际会议

[3]Ziwang Huang(指导硕士生), Hua Chai, Ruoqi Wang, Haitao Wang, Yuedong Yang, Hejun Wu*, "Integration of Patch Features through Self-Supervised Learning and Transformer for Survival Analysis on Whole Slide Images," in 24 International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI (8) 2021: 561-570),2021.医学图像顶级会议

[4]祝一帆(指导硕士生);王海涛;李可;吴贺俊*,“一种高精度路面裂缝检测网络结构:Crack U-Net,”《计算机科学》,2021,49(1):204-211. CCF-B 中文科技期刊

[5]Hejun Wu, Rong Gao, Yeong Poh Sheng, Bo Chen, Shuo Li: SDAE-GAN: Enable high-dimensional pathological images in liver cancer survival prediction with a policy gradient based data augmentation method. Medical Image Analysis.2020,62: 101640.(中科院一区期刊)

[6]Guanbin Li, Yukang Gan, Hejun Wu, Nong Xiao, Liang Lin: “Cross-Modal Attentional Context Learning for RGB-D Object Detection.” IEEE Trans. Image Processing 2019,28(4): 1591-1601(中科院一区期刊)

[7]Chenglong Li, Xiao Wang, Lei Zhang, Jin Tang, Hejun Wu, Liang Lin: “Weighted Low-Rank Decomposition for Robust Grayscale-Thermal Foreground Detection”. IEEE Trans. Circuits Syst. Video Techn. 27(4): 725-738,2017,JCR一区

[8]Huanhuan Wu, James Cheng, Yiping Ke, Silu Huang, Yuzhen Huang, Hejun Wu: “Efficient Algorithms for Temporal Path Computation.” IEEE Trans. Knowl. Data Eng. 2016,28(11): 2927-2942 , (CCF-A类期刊)

[9]Jiahao Li, Hejun Wu*, Xinrui Zhou: “PeMapNet: Action Recognition from Depth Videos Using Pyramid Energy Maps on Neural Networks.” IEEE 29th International Conference on Tools with Artificial Intelligence,2017, 80-87.

CONTACT Me
Scholat.com/wuhejun
广州大学城
我的主页
获取微信名片
SCHOLAT.com 学者网
ABOUT US | SCHOLAT